If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2-20=30
We move all terms to the left:
18x^2-20-(30)=0
We add all the numbers together, and all the variables
18x^2-50=0
a = 18; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·18·(-50)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*18}=\frac{-60}{36} =-1+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*18}=\frac{60}{36} =1+2/3 $
| -5(3x+4)+12x=1 | | 19-r=-38 | | x-8/2=8/5=-x/3 | | r-6=64+4r | | -3f+1-17f=17-19f | | -10q+9q-18=18+3q | | 2x/2=-37/2 | | 13x-12=6x-6 | | -3/2(x=4)-3=7 | | 7x+27=4x+39 | | 6+p=48 | | j2–3j+2=0 | | 23i=69 | | -20-13c+3c=-8+20 | | -2(x=1)+9x=54 | | 19+9m+4=6m-1 | | 4+7m-2=7m+29-3m | | h-9=-9 | | 10-f=-11 | | 6w+11w-14=14+19w | | -2y-(-3y-1)=17 | | 3+g=-3 | | e+13=-26 | | y-5÷3=1 | | 5-d=6 | | 3.1g+12.4g+3.23=13.91+16.1g | | 12+c=23 | | 9s-17=18 | | b-9=21 | | -11-4g-16g=-19g-17 | | -4x-2(8x+11)=-(-2x-10) | | 13x-6=6x=14 |